Helt, a novel basic-helix-loop-helix transcriptional repressor expressed in the developing central nervous system.
نویسندگان
چکیده
Neuronal differentiation is regulated by many basic-helix-loop-helix (bHLH) family transcriptional activators and repressors, and the balance of activity between these factors is important for the differentiation process. Here, we report the identification of a novel transcriptional repressor, designated Helt. Helt encoded a Hey-related bHLH protein containing the bHLH and Orange domains. Helt could homodimerize, and heterodimerize with Hes5 or Hey2. Both the bHLH and Orange domains were involved in the homodimerization. In contrast, only the bHLH domain was required for the heterodimerization with Hey2, whereas only the Orange domain mediated the interaction between Helt and Hes5. Thus, Helt has two dimerization domains, and these domains independently select a partner. Identification of preferred recognition sequences by CASTing experiments revealed that Helt bound to the E box, which was distinct from the Hes1 optimal sequence around the E box core. Not only the core sequence but also sequences flanking the E box were essential for the recognition by Helt and Hes1. Furthermore, Helt repressed transcription from an artificial promoter through binding to the optimal E box elements, as well as transcription from its own promoter. Using in situ hybridization and immunohistochemistry, Helt expression in embryos was investigated. Helt was mainly expressed in undifferentiated neural progenitors in some of the developing brain regions, including the mesencephalon and diencephalon, at the neurogenesis stage. These results suggest that Helt acts as a transcriptional repressor to regulate neuronal differentiation and/or identity.
منابع مشابه
Helt determines GABAergic over glutamatergic neuronal fate by repressing Ngn genes in the developing mesencephalon.
The mechanism underlying the determination of neurotransmitter phenotype in the developing mesencephalon, particularly GABAergic versus glutamatergic fate, remains largely unknown. Here, we show in mice that the basic helix-loop-helix transcriptional repressor gene Helt (also known as Megane and Heslike) functions as a selector gene that determines GABAergic over glutamatergic fate in the mesen...
متن کاملA MODEL FOR THE BASIC HELIX- LOOPHELIX MOTIF AND ITS SEQUENCE SPECIFIC RECOGNITION OF DNA
A three dimensional model of the basic Helix-Loop-Helix motif and its sequence specific recognition of DNA is described. The basic-helix I is modeled as a continuous ?-helix because no ?-helix breaking residue is found between the basic region and the first helix. When the basic region of the two peptide monomers are aligned in the successive major groove of the cognate DNA, the hydrophobi...
متن کاملFHL2 interacts with and acts as a functional repressor of Id2 in human neuroblastoma cells
Inhibitor of differentiation 2 (Id2) is a natural inhibitor of the basic helix-loop-helix transcription factors. Although Id2 is well known to prevent differentiation and promote cell-cycle progression and tumorigenesis, the molecular events that regulate Id2 activity remain to be investigated. Here, we identified that Four-and-a-half LIM-only protein 2 (FHL2) is a novel functional repressor of...
متن کاملDrosophila Topors is a RING finger-containing protein that functions as a ubiquitin-protein isopeptide ligase for the hairy basic helix-loop-helix repressor protein.
Transcriptional repression plays an essential role in many aspects of metazoan development. Drosophila hairy is a primary pair-rule gene encoding a basic helix-loop-helix class transcriptional repressor that is required for proper segmentation. Previous characterization of Hairy-binding proteins has implicated two different classes of histone deacetylase as mediators of Hairy repression. Here, ...
متن کاملThe transcriptional repressor STRA13 regulates a subset of peripheral circadian outputs.
Central and peripheral mammalian circadian clocks regulate a variety of behavioral and physiological processes through the rhythmic transcription of hundreds of clock-controlled genes. The circadian expression of many transcriptional regulators suggests that a major part of this circadian gene network is indirectly regulated by clock genes. Here we show that the basic helix-loop-helix transcrip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 16 شماره
صفحات -
تاریخ انتشار 2004